Effect of Random and Block Copolymer Additives on a Homopolymer Blend Studied by Small-Angle Neutron Scattering

نویسندگان

  • GRETCHEN VOGE
  • KARI FOSSER
  • DEAN WALDOW
  • ROBERT BRIBER
  • ADEL HALASA
چکیده

Small-angle neutron scattering (SANS) has been employed to study a blend of polystyrene and polybutadiene modified by copolymer additives. SANS data from the one-phase region approaching the phase boundary has been acquired for blends modified by random and diblock copolymers that have equal amounts of styrene and butadiene monomers as well as a random copolymer with an unequal monomer composition. The binary blend is near the critical composition, and the copolymer concentrations are low at 2.5% (w/w). The data have been fitted with the random-phase approximation model (binary and multicomponent versions) to obtain Flory–Huggins interaction parameters ( ) for the various monomer interactions. These results are considered in the context of previous light scattering data for the same blend systems. The SANS cloud points are in good agreement with previous results from light scattering. The shifts in the phase boundary are due to the effects of the additives on the parameter at the spinodal. All the additives appear to lower the parameter between the homopolymers; this is in conflict with the predicted Flory–Huggins behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3191–3203, 2004

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembled Nanostructures in Copolymer Blends: Saxs, sans and Tem Study

Phenomena associated with the phase behaviour and self-assembled nanostructures of three block copolymer systems have been studied by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS) and transmision electron microscopy (TEM). 1) System A-b-B/A (dPS-b-PMMA/PS homopolymer) were studied as a function of molecular weight and concentration of the added homopolymer. The para...

متن کامل

Effect of homopolymer molecular weight on order-order transition in block copolymer and homopolymer blends.

The order-order transition temperature (T(OOT)) in blends of poly(styrene-b-isoprene-b-styrene) (S-I-S) triblock copolymer and polyisoprene (PI) homopolymer was investigated by using synchrotron small-angle X-ray scattering (SAXS). Pure triblock copolymer undergoes an order-order transition (OOT) from hexagonally ordered cylinder (HEX) to body centered cubic (BCC) phases. In order to investigat...

متن کامل

Interface-induced morphology transition in triblock copolymer films swollen with low-molecular-weight homopolymer.

The morphology transition due to midblock swelling with low-molecular-weight homopolymer polystyrene of an ABA-type triblock copolymer polyparamethylstyrene-block-polystyrene-block-polyparamethylstyrene at the buried silicon substrate interface is studied as a function of different substrate surface treatments. With grazing incidence small-angle neutron scattering (GISANS), high interface sensi...

متن کامل

Influence of conformational asymmetry on the phase behavior of ternary homopolymer/block copolymer blends around the bicontinuous microemulsion channel.

We have developed a new ternary polymeric system, poly(ethylene-alt-propylene) (PEP)/poly(butylene oxide) (PBO)/PEP-PBO, to study the complex phase behavior near the bicontinuous microemulsion phase channel. The molecular weights of the PEP and PBO homopolymers are 2600 and 3050 g/mol, respectively, and the copolymer is 23.4 kg/mol with volume fraction composition fPBO=0.49. A combination of sm...

متن کامل

Well-Ordered Polymer Melts with 5 nm Lamellar Domains from Blends of a Disordered Block Copolymer and a Selectively Associating Homopolymer of Low or High Molar Mass

The use of short chain block copolymer melts as nanostructured templates with sub-10 nm domains is often limited by their low segregation strength ( N). Since increasing molar mass to strengthen segregation also increases the interdomain spacing of block copolymer melts, it is more desirable to increase the Flory-Huggins segment-segment interaction parameter, , to produce strong segregation. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004